The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements
نویسندگان
چکیده
We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40 % and at least 10 % higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.
منابع مشابه
Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملPresenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model
The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملFirst measurements of the Twomey indirect effect using ground-based remote sensors
[1] We demonstrate first measurements of the aerosol indirect effect using ground-based remote sensors at a continental US site. The response of nonprecipitating, icefree clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path. This is done i...
متن کاملFirst Scientific Result
Laser radar, more popularly known as LIDAR (LIght Detection And Ranging) uses electromagnetic radiation at optical frequencies. LIDAR has become an excellent tool for monitoring the atmosphere in a relatively short period of time (a few seconds to minutes). Currently, LIDAR systems are used for studying the atmospheric structure and dynamics, trace constituents, aerosols, clouds, boundary and m...
متن کامل